

- Ideal for 868.30 MHz Transmitters
- Very Low Insertion Loss
- **Quartz Stability**
- Ultra Miniature Ceramic QCC8C SMD Package
- Complies with Directive 2002/95/EC (RoHS Compliant)

SR5903

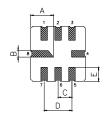
ABSOLUTE MAXIMUM RATING (T_A =25°C)							
Parameter		Rating	Unit				
CW RF Power Dissipation	Р	0	dBm				
DC Voltage	V _{DC}	±30	V				
Operating Temperature Range	T _A	-10 ~ +60	°C				
Storage Temperature Range	$T_{ m stg}$	-40 ~ +85	°C				

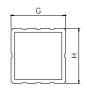
ELECTRONIC CHARACTERISTICS						
	Parameter	Sym	Minimum	Typical	Maximum	Unit
Frequency (25°C)	Nominal Frequency	f _c	NS	868.30	NS	MHz
	Tolerance from 868.30 MHz	Δf_c	-	-	± 150	KHz
Insertion Loss		IL	-	1.5	2.2	dB
Quality Factor	Unloaded Q-Value	Q_u	-	10,020	-	-
	50Ω Loaded Q-Value	$Q_{\scriptscriptstyle L}$	-	1,600	-	-
Temperature Stability	Turnover Temperature	To	25	-	55	°C
	Turnover Frequency	f _o	-	f_c	-	KHz
	Frequency Temperature Coefficient	FTC	-	0.032	-	ppm/°C2
Frequency Aging	Absolute Value during the First Year	$ f_A $	-	-	10	ppm/yr
DC Insulation Resistance Between any Two Pins		-	1.0	-	-	ΜΩ
RF Equivalent RLC Model	Motional Resistance	$R_{\scriptscriptstyle M}$	-	19.0	29.0	Ω
	Motional Inductance	L _M	-	34.9170	-	μН
	Motional Capacitance	C _M	-	0.96317	-	fF
	Shunt Static Capacitance	Co	2.20	2.50	2.80	pF

NS = Not Specified

Note:

- The frequency f_c is the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test system with VSWR \leq 1.2:1.
- Unless noted otherwise, case temperature TC = +25°C±2°C.
- Frequency aging is the change in fC with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- Turnover temperature, T0, is the temperature of maximum (or turnover) frequency, f0. The nominal frequency at any case temperature, TC, may be calculated from: $f = f_0 [1 - FTC (T_0 - T_c)^2]$.
- This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_{O} is the measured static (nonmotional) capacitance between input terminal and ground or output terminal and ground.


- The measurement includes case parasitic capacitance.
- Derived mathematically from one or more of the following directly measured parameters: f_c , IL, 3 dB bandwidth, f_C versus T_C , and Co.
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail to sales@vanlong.com.


Email: sales@vanlong.com

Page 1 of 2

PACKAGE DIMENSIONS (QCC8C)

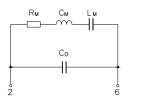
Electrical Connections

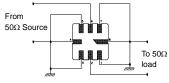
Terminals	Connection	
2	Terminal 1	
6	Terminal 2	
4,8	Case-Ground	
1,3,5,7	3,5,7 NC	

Package Dimensions

Dimensions	Nom (mm)	Dimensions	Nom (mm)	
Α	2.08	Е	1.20	
В	0.60	F	1.35	
С	1.27	G	5.00	
D	2.54	Н	5.00	

MARKING

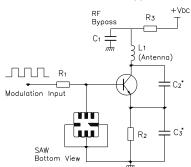



Laser or lnk marking.

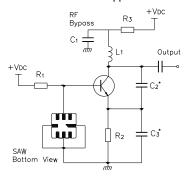
- 1. SR5903 Part Code
- 2. Date Code:

Y: Last digit of year WW: Week No.

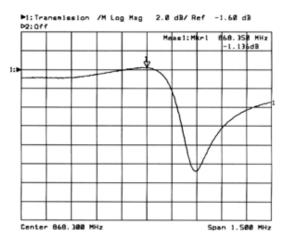
EQUIVALENT LC MODEL AND TEST CIRCUIT

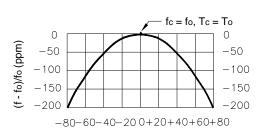


Equivalent LC Model


Test Circuit

TYPICAL APPLICATION CIRCUIT


Low Power Transmitter Application


Local Oscillator Application

TYPICAL FREQUENCY RESPONSE

TEMPERATURE CHARACTERISTICS

 $\Delta T = Tc - To (°C)$

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

Phone: +86 (10) 5820-3910

Fax: +86 (10) 5820-3915

Email: sales@vanlong.com

Web: http://www.vanlong.com