

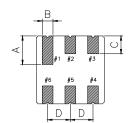
- Ideal for 433.92 MHz Transmitters
- Very Low Insertion Loss
- Quartz Stability
- Ultra Miniature Ceramic SMD Package (DCC6)
- Complies with Directive 2002/95/EC (RoHS Compliant)

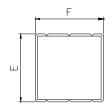
SR5513

ABSOLUTE MAXIMUM RATING (T_A =25°C)						
Parameter		Rating	Unit			
CW RF Power Dissipation	Р	0	dBm			
DC Voltage	$V_{ m DC}$	±30	V			
Operating Temperature Range	T _A	-10 ~ +60	°C			
Storage Temperature Range	\mathcal{T}_{stg}	-40 ~ + 85	°C			

ELECTRONIC CHARACTERISTICS						
	Parameter	Sym	Minimum	Typical	Maximum	Unit
Frequency (25°C)	Nominal Frequency	f _c	NS	433.92	NS	MHz
	Tolerance from 433.92 MHz	Δf_c	-	-	± 75	KHz
Insertion Loss		IL	=	1.6	2.0	dB
Quality Factor	Unloaded Q-Value	Qu	-	10,200	-	-
	50Ω Loaded Q-Value	Q_L	-	1,700	-	-
Temperature Stability	Turnover Temperature	To	25	-	55	°C
	Turnover Frequency	f _o	-	f_c	-	KHz
	Frequency Temperature Coefficient	FTC	-	0.032	-	ppm/°C2
Frequency Aging	Absolute Value during the First Year	$ f_A $	=	-	10	ppm/yr
DC Insulation Resistance Between any Two Pins		-	1.0	-	-	ΜΩ
RF Equivalent RLC Model	Motional Resistance	$R_{\scriptscriptstyle M}$	-	20	26	Ω
	Motional Inductance	L _M	-	74.8619	-	μН
	Motional Capacitance	C _M	-	1.7989	-	fF
	Shunt Static Capacitance	Co	1.65	1.95	2.25	pF

NS = Not Specified

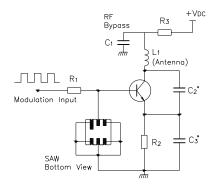

Note:


- The frequency f_c is the frequency of minimum IL with the resonator in the specified test fixture in a 50Ω test system with VSWR ≤ 1.2:1.
- 2. Unless noted otherwise, case temperature TC = +25°C±2°C.
- 3. Frequency aging is the change in fC with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- Turnover temperature, T0, is the temperature of maximum (or turnover) frequency, f0. The nominal frequency at any case temperature, TC, may be calculated from: f = f_o [1 - FTC (T_O - T_C)²].
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_O is the measured static (nonmotional) capacitance between input terminal and ground or output terminal and ground.

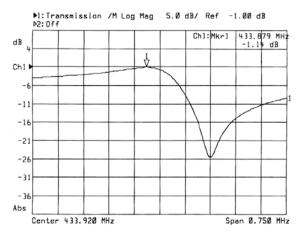
- The measurement includes case parasitic capacitance.
- Derived mathematically from one or more of the following directly measured parameters: f_c, IL, 3 dB bandwidth, f_C versus T_C, and Co.
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- For questions on technology, prices and delivery, please contact our sales offices or e-mail to sales@vanlong.com.

PACKAGE DIMENSIONS (DCC6)

MARKING


Laser or Inkprint Marking:

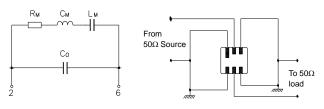
- 1. SR5513 Part Code
- 2. Date Code:


Y: Last digit of year WW: Week No.

TYPICAL APPLICATION CIRCUIT

Low Power Transmitter Application

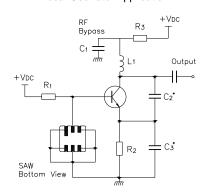
TYPICAL FREQUENCY RESPONSE

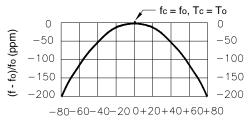

Electrical Connections

Terminals	Connection		
2	Input / Output		
5	Output / Input		
1,3,4,6	Ground		

Package Dimensions

Dimensions	Nom (mm)	Dimensions	Nom (mm)
Α	1.90	E	3.80
В	0.64	F	3.80
С	1.00	G	1.20
D	1.27		


EQUIVALENT LC MODEL AND TEST CIRCUIT


Equivalent LC Model

Test Circuit

Local Oscillator Application

TEMPERATURE CHARACTERISTICS

 $\Delta T = Tc - To (°C)$

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

Phone: +86 (10) 5820 3910 Fax: +86 (10) 5820 3915

Email: sales@vanlong.com

Web: http://www.vanlong.com