318.00 MHZ ONE PORT SAW RESONATOR

- Ideal for 318.00 MHz Transmitters
- Very Low Insertion Loss
- Quartz Stability
- Miniature Ceramic QCC4A SMD Package
- Complies with Directive 2002/95/EC (RoHS Compliant)

ABSOLUTE MAXIMUM RATING ($T_A=25^{\circ}$ C)				
Parameter		Rating	Unit	
CW RF Power Dissipation	Р	0	dBm	
DC Voltage	V _{DC}	±30	V	
Operating Temperature Range	T _A	-10 ~ +60	°C	
Storage Temperature Range	$T_{ m stg}$	-40 ~ +85	С	

ELECTRONIC CHARACTERISTICS						
	Parameter	Sym	Minimum	Typical	Maximum	Unit
Frequency (25°C)	Nominal Frequency	f _c	NS	318.00	NS	MHz
	Tolerance from 318.00 MHz	Δf_c	-	-	± 75	KHz
Insertion Loss		IL	-	1.2	1.8	dB
Quality Factor	Unloaded Q-Value	Q _u	-	14,550	-	-
	50Ω Loaded Q-Value	Q_L	-	1,900	-	-
Temperature Stability	Turnover Temperature	To	25	-	55	°C
	Turnover Frequency	f _o	-	f_c	-	KHz
	Frequency Temperature Coefficient	FTC	-	0.032	-	ppm/°C ²
Frequency Aging	Absolute Value during the First Year	f_A	-	-	10	ppm/yr
DC Insulation Resistance Be	etween any Two Pins	-	1.0	-	-	MΩ
RF Equivalent RLC Model	Motional Resistance	R _M	-	15.0	23.0	Ω
	Motional Inductance	L _M	-	109.4119	-	μH
	Motional Capacitance	$C_{\scriptscriptstyle M}$	-	2.2917	-	fF
	Shunt Static Capacitance	Co	2.4	2.7	3.0	pF

NS = Not Specified

Note:

- 1. The frequency f_c is the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test system with VSWR \leq 1.2:1.
- 2. Unless noted otherwise, case temperature $TC = +25^{\circ}C \pm 2^{\circ}C$.
- Frequency aging is the change in fC with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T0, is the temperature of maximum (or turnover) frequency, f0. The nominal frequency at any case temperature, TC, may be calculated from: $f = f_o [1 FTC (T_o T_c)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_0 is the measured static (nonmotional) capacitance between input terminal and ground or output terminal and ground.

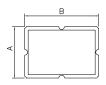
The measurement includes case parasitic capacitance.

- 6. Derived mathematically from one or more of the following directly measured parameters: f_c , *IL*, 3 dB bandwidth, f_c versus T_{C_1} and Co.
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail to sales@vanlong.com.

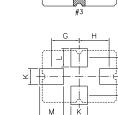
Phone: +86 (10) 5820-3910

Fax: +86 (10) 5820-3915

Email: sales@vanlong.com



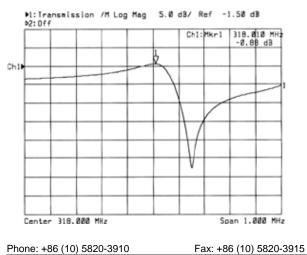
SR5418


318.00 MHZ ONE PORT SAW RESONATOR

PACKAGE DIMENSIONS (QCC4A)

Recommended PC Board Layout

MARKING


- Laser or Ink Marking
- 1. SR5418 Part Code 2
 - Date Code: Y : Last digit of year WW : Week No.

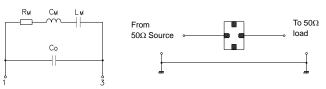
TYPICAL APPLICATION CIRCUIT

Low Power Transmitter Application

TYPICAL FREQUENCY RESPONSE

SR5418

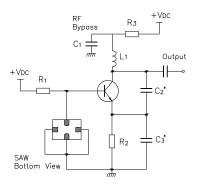
© VANLONG TECHNOLOGY CO., LTD.

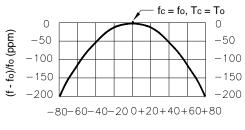

Electrical Connections

Terminals	Connection
1	Input / Output
3	Output / Input
2.4	Case-Ground

Package Dimensions

Dimensions	Nom (mm)	Dimensions	Nom (mm)
A	3.5	G	1.9
В	5.0	Н	2.15
С	1.4	J	2.8
D	0.5	K	0.7
E	0.8	L	1.3
F	1.2	М	1.8


EQUIVALENT LC MODEL AND TEST CIRCUIT


Equivalent LC Model

Typical Test Circuit

Local Oscillator Application

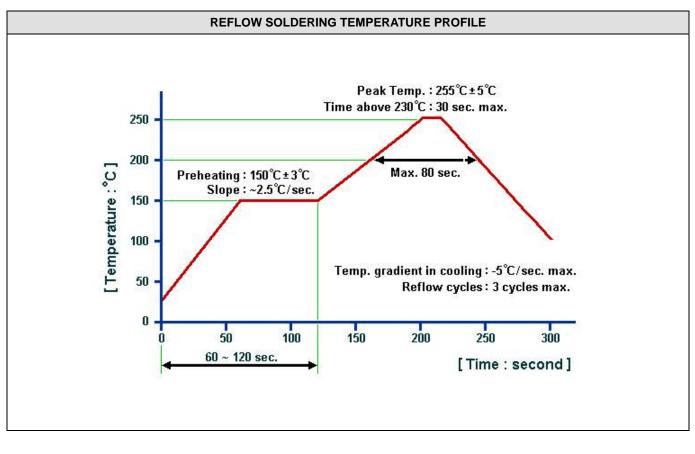
TEMPERATURE CHARACTERISTICS

 $\Delta T = Tc - To (°C)$

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

Email: sales@vanlong.com

Rev. #1


Sept. 26, 2010

Page 2 of 3

318.00 MHZ ONE PORT SAW RESONATOR

ENVIRONMENTAL CHARACTERISTICS				
Item	Condition of Test	Requirements		
Random Drop	The Filter shall be measured after 3 times random drops from the height of 30cm on concrete floor.	-		
Vibration	The Filter shall be measured after being applied vibration of amplitude of 1.5mm with 10Hz to 55Hz bands of vibration frequency to each of 3 perpendicular directions for 1 hour.			
Lead Pulling Test	A weight of 3kg is pulled towards an axis of each terminal for 10 seconds.			
Lead bending Test	Lead shall be subject to withstand against 90 bending at its stem. This operation shall be done toward both directions.			
Resistance to Soldering Heat	Lead terminals are immersed up to 1.5mm from the Filter's body in solder bath of $270^{\circ}C \pm 10^{\circ}C$ for 10 ± 1 seconds, and then the Filter shall be measured after being placed in natural condition for 2 hour.	No visible damage and the		
Solderability	Lead terminals are immersed in resin for 5 seconds and then immersed in soldering bath of 270°C \pm 10°C for 2 \pm 0.5 seconds.	measured values shall remain the Electronic Characteristics after tests.		
High Temperature Storage	After being placed in a chamber with +85°C \pm 2°C for 96 \pm 4 hours and then being placed in natural condition for 2 hour. The Filter shall be measured.			
Low Temperature Storage	After being placed in a chamber with -40°C \pm 2°C for 96 \pm 4 hours and then being placed in natural condition for 2 hour. The Filter shall be measured.			
Humidity	After being placed in a chamber with 90 to 95% R.H. at +40°C \pm 2°C for 96 \pm 4 hours and then being placed in natural condition for 2 hour. The Filter shall be measured.			
Heat Shock	After being kept at room temperature, the Filter shall be placed at temperature of -40°C for 30 minutes, and then the Filter shall be immediately placed at temperature of 85°C, after 30 minutes at temperature of 85°C, the Filter shall be returned to -40°C again. After 5 times above cycles, the Filter shall be returned to room temperature, after 2 hour in natural condition, the Filter shall be measured.			

Phone: +86 (10) 5820-3910

Email: sales@vanlong.com