916.50 MHZ ONE PORT SAW RESONATOR

- Ideal for 916.50 MHz Transmitters
- Very Low Insertion Loss
- Quartz Stability
- Ultra Miniature Ceramic SMD Package (QCC8C)
- Complies with Directive 2002/95/EC (RoHS Compliant)

ABSOLUTE MAXIMUM RATING ($T_A=25^{\circ}$ C)							
Parameter		Rating	Unit				
CW RF Power Dissipation	Р	0	dBm				
DC Voltage	V _{DC}	±30	V				
Operating Temperature Range	TA	-10 ~ +60	°C				
Storage Temperature Range	$T_{ m stg}$	-40 ~ +85	°C				

ELECTRONIC CHARACTERISTICS						
	Parameter	Sym	Minimum	Typical	Maximum	Unit
Frequency (25°C)	Nominal Frequency	f _c	NS	916.50	NS	MHz
	Tolerance from 916.50 MHz	Δf_c	-	-	±150	KHz
Insertion Loss		IL	-	1.5	2.2	dB
Quality Factor	Unloaded Q-Value	Qu	-	10,020	-	-
	50 Ω Loaded Q-Value	Q_L	-	1,500	-	-
Temperature Stability	Turnover Temperature	To	25	-	55	°C
	Turnover Frequency	fo	-	f _c	-	KHz
	Frequency Temperature Coefficient	FTC	-	0.032	-	ppm/°C ²
Frequency Aging	Absolute Value during the First Year	f_	-	-	10	ppm/yr
DC Insulation Resistance Between any Two Pins		-	1.0	-	-	MΩ
RF Equivalent RLC Model	Motional Resistance	$R_{\scriptscriptstyle M}$	-	19	29	Ω
	Motional Inductance	L _M	-	31.0132	-	μH
	Motional Capacitance	$C_{\scriptscriptstyle M}$	-	0.9734	-	fF
	Shunt Static Capacitance	Co	1.8	2.1	2.4	pF

NS = Not Specified

Note:

- 1. The frequency f_c is the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test system with VSWR \leq 1.2:1.
- 2. Unless noted otherwise, case temperature $TC = +25^{\circ}C \pm 2^{\circ}C$.
- Frequency aging is the change in fC with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 4. Turnover temperature, T0, is the temperature of maximum (or turnover) frequency, f0. The nominal frequency at any case temperature, TC, may be calculated from: $f = f_o [1 FTC (T_o T_c)^2]$.
- 5. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only. The capacitance C_0 is the measured static (nonmotional) capacitance between input terminal and ground or output terminal and ground.

The measurement includes case parasitic capacitance.

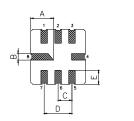
- 6. Derived mathematically from one or more of the following directly measured parameters: f_c , *IL*, 3 dB bandwidth, f_c versus T_{C_1} and Co.
- 7. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- 8. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 10. For questions on technology, prices and delivery, please contact our sales offices or e-mail to sales@vanlong.com.

Phone: +86 (10) 5820-3910

Fax: +86 (10) 5820-3915

Email: sales@vanlong.com

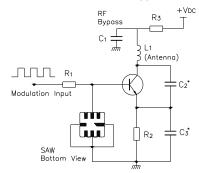
Page 1 of 2

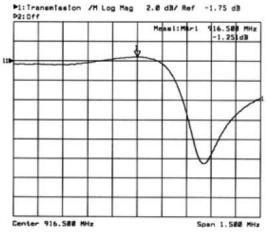


SR5004

916.50 MHZ ONE PORT SAW RESONATOR

PACKAGE DIMENSIONS (QCC8C)


MARKING


- Laser or Inkprint marking 1. SR5004 - Part Code 2. Date Code:
 - YY : Last 2 digits of year WW : Week No.

TYPICAL APPLICATION CIRCUIT

Low Power Transmitter Application

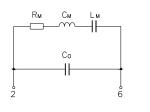
TYPICAL FREQUENCY RESPONSE

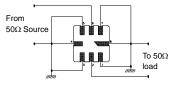
Phone: +86 (10) 5820-3910 SR5004

© VANLONG TECHNOLOGY CO., LTD.

Fax: +86 (10) 5820-3915

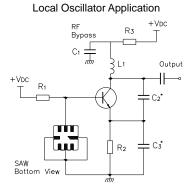
Revision #1 March 08, 2012

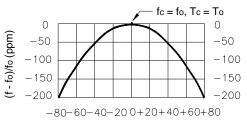

Electrical Connections


Terminals	Connection
2	Terminal 1
6	Terminal 2
4,8	Case-Ground
1,3,5,7	NC

Package Dimensions

Dimensions	Nom (mm)	Dimensions	Nom (mm)
A	2.08	E	1.20
В	0.60	F	1.35
С	1.27	G	5.00
D	2.54	Н	5.00


EQUIVALENT LC MODEL AND TEST CIRCUIT



Equivalent LC Model

Test Circuit

TEMPERATURE CHARACTERISTICS

 $\Delta T = Tc - To (°C)$

The curve shown above accounts for resonator contribution only and does not include oscillator temperature characteristics.

Email: sales@vanlong.com