

- Ideal Front-End Filter for 401.65MHz Receivers
- Low-Loss, Coupled-Resonator Quartz Design
- Simple External Impedance Matching
- Ultra Miniature Ceramic QCC8C Package

SF5501

Absolute Maximum Rating (Ta=25°C)							
Parameter		Rating	Unit				
Input Power Level	Pin	10	dBm				
DC Voltage	V_{DC}	12	V				
Operating Temperature Range	T _A	-10 ~ +60	°C				
Storage Temperature Range	$T_{ m stg}$	-40 ~ +85	°C				

Electronic Characteristics						
Parameter		Sym	Minimum	Typical	Maximum	Unit
Nominal Frequency (25°C)		$f_{\rm C}$	NS	401.65	NS	MHz
(Center frequency between 3dB points)		IC.				
Insertion Loss		IL	-	3.0	5.0	dB
3dB Bandwidth		BW ₃	-	550	-	KHz
Rejection	at fc - 21.4 MHz (Image)	-	40	50	-	dB
	at fc - 10.7 MHz (LO)	-	15	25	-	dB
	Ultimate	-	-	60	-	dB
Temperature Stability	Operating Temperature Range	T_{C}	-10	-	+60	°C
	Turnover Temperature	To	25	-	55	°C
	Turnover Frequency	f _O	-	f_{C}	-	KHz
	Frequency Temperature Coefficient	FTC	-	0.032	-	ppm/°C
Frequency Aging	Absolute Value during the First Year	fA	-	-	10	ppm/yr
DC Insulation Resistance Between any Two Pins		-	1.0	-	-	MΩ

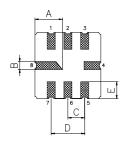
NS = Not Specified

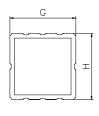
Notes:

- 1. The frequency f_{C} is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR \leq 1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_C . Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- 4. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.

- Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at any case temperature, T_C, may be calculated from: f = f₀ [1 - FTC (T₀ - T_C)²].
- The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- For questions on technology, prices and delivery please contact our sales offices or e-mail sales@vanlong.com.

Phone: +86 10 6301 4184


Fax: +86 10 6301 9167


Email: sales@vanlong.com

Web: http://www.vanlong.com

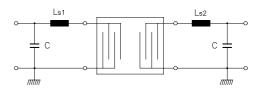
Package Dimensions (QCC8C)

Electrical Connections

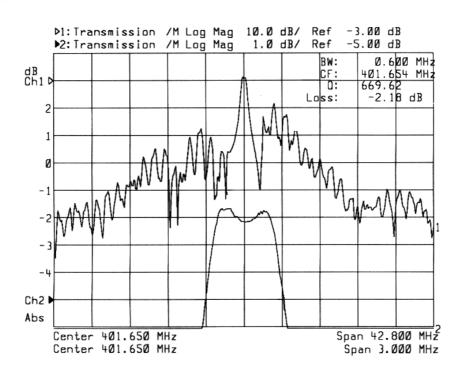
Terminals	Connection			
1	Input Ground			
2	Input			
5	Output Ground			
6	Output			
3,7	To be Grounded			
4,8	Case Ground			

Package Dimensions

Dimensions	Nom (mm)	Dimensions	Nom (mm)
Α	2.08	E	1.20
В	0.60	F	1.35
С	1.27	G	5.00
D	2.54	Н	5.00


Marking

- 1. F5501 Part Code
- 2. Frequency (MHz) in 6 digits
- 3. Date Code:


Y : Last digit of year WW : Week No.

Test Circuit

C = 8.2 pFLs1 = Ls2 = 5 tunes of 0.5mm insulated copper, 2.0 ID.

Typical Frequency Response

Phone: +86 10 6301 4184

Fax: +86 10 6301 9167

Email: sales@vanlong.com

Web: http://www.vanlong.com