915.75 MHz SAW Filter

SF5009

- Ideal Front-End Filter for 915.75 MHz Receivers
- Low-Loss, Coupled-Resonator Quartz Design
- Simple External Impedance Matching
- Ultra Miniature Ceramic QCC8C Package

Absolute Maximum Rating (Ta=25°C)			
Parameter	Rating	Unit	
Input Power Level	10	dBm	
DC Voltage VDC	12	V	
Operating Temperature Range	-10 ~ +60	°C	
Storage Temperature Range	-40 ~ +85	°C	

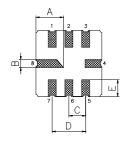
	Electronic Cha	aracteristic	cs			
	Parameter	Sym	Minimum	Typical	Maximum	Unit
Frequency (25°C)	Nominal Frequency	fc	NS	915.75	NS	MHz
Insertion Loss		IL	-	15.0	16.5	dB
3dB Bandwidth		BW3	-	2.6	-	MHz
Rejection	at <i>fc</i> - 5.0 MHz	-	35	46	-	dB
	at <i>fc</i> + 5.0 MHz ~ +200.0 MHz	-	32	43	-	dB
Temperature Stability	Operating Temperature Range	Тс	-10	-	+60	°C
	Turnover Temperature	То	25	40	55	°C
	Turnover Frequency	fo	-	fc	-	KHz
	Frequency Temperature Coefficient	FTC	-	-	-0.032	ppm/°C
Frequency Aging	Absolute Value during the First Year	fA	-	-	10	ppm/yr
DC Insulation Resistance	Between any Two Pins	-	1.0	-	-	MΩ

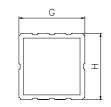
NS = Not Specified

Notes:

- 1. The frequency f_C is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR \leq 1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_c. Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- 4. Frequency aging is the change in f_c with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.

- 5. Turnover temperature, T₀, is the temperature of maximum (or turnover) frequency, f₀. The nominal frequency at any case temperature, T_c, may be calculated from: $f = f_0 [1 FTC (T_0 T_c)^2]$.
- 6. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 9. For questions on technology, prices and delivery please contact our sales offices or e-mail sales@vanlong.com.


Fax: +86 10 6301 9167


Email: sales@vanlong.com

915.75 MHz SAW Filter

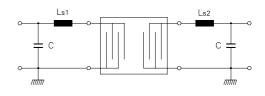
Package Dimensions (QCC8C)

	<u> </u>
	Ŀ

Electrical Connections

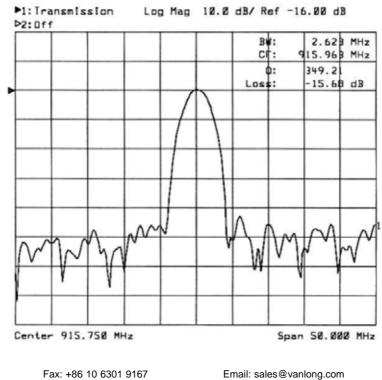
Terminals	Connection	
1	Input	
2	Input Ground	
5	Output	
6	Output Ground	
3,7	To be Grounded	
4,8	Case Ground	

Package Dimensions


Dimensions	Nom (mm)	Dimensions	Nom (mm)
A	2.08	E	1.20
В	0.60	F	1.35
С	1.27	G	5.00
D	2.54	Н	5.00

Marking

ſ	0-0-0	1
	F5009	
	915.75	
	YWW	
Ľ		1


- 1. F5009 Part Code
- 2. Frequency (MHz) in 5 digits
- 3. Date Code:
 - Y : Last digit of year WW : Week No.

Test Circuit

 $\label{eq:c} \begin{array}{l} C=4.0pF\\ Ls1=1.5\ tunes\ of\ 0.5mm\ insulated\ copper,\ 3.0mm\ ID.\\ Ls2=2.0\ tunes\ of\ 0.5mm\ insulated\ copper,\ 3.0mm\ ID \end{array}$

Typical Frequency Response

