902.30 MHz SAW Filter

VANLONG

SF5002

- Designed to Provide Front-end Selectivity in 902.30 MHz
- Low-Loss, Coupled-Resonator Quartz Design
- Simple External Impedance Matching
- Ultra Miniature Ceramic QCC8C SMD Package
- Complies with Directive 2002/95/EC (RoHS Compliant)

Absolute Maximum Rating (Ta=25°C)				
Parameter		Rating	Unit	
Input Power Level	P_{in}	10	dBm	
DC Voltage VDC Between Any Two Pins	V _{DC}	12	V	
Operating Temperature Range	T _A	-10 ~ +60	°C	
Storage Temperature Range	$T_{\rm stg}$	-40 ~ +85	°C	

Electronic Characteristics						
	Parameter	Sym	Minimum	Typical	Maximum	Unit
Nominal Frequency (at 2 (Center frequency between	,	f _C	NS	902.30	NS	MHz
Insertion Loss Attenuation	on	IL	-	3.5	5.0	dB
3dB Passband		BW ₃	-	1.2	-	MHz
Passband Ripple		-	-	-	±1.0	dB
Rejection	At f _C - 21.4 MHz (Image)	-	33	40	-	dB
	At f _C - 10.7 MHz (LO)	-	15	30	-	dB
	Ultimate	-	-	60	-	dB
	Operating Temperature Range	T _C	-10	-	+60	°C
Tomporatura Stability	Turnover Temperature	To	25	-	55	°C
Temperature Stability	Turnover Frequency	f _O	-	f _C -	-	MHz
	Frequency Temperature Coefficient FTC - 0.	0.032	-	ppm/C ²		
Frequency Aging	Absolute Value during the First Year	fA	-	-	10	ppm/yr
DC Insulation Resistance Between any Two Pins -		-	1.0	-	-	MΩ

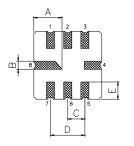
NS = Not Specified

Notes:

- 1. The frequency $f_{\rm C}$ is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR \leq 1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_c . Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- 4. Frequency aging is the change in f_C with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.

- 5. Turnover temperature, T_0 , is the temperature of maximum (or turnover) frequency, f_0 . The nominal frequency at any case temperature, T_C , may be calculated from: $f = f_0 [1 FTC (T_0 T_C)^2]$.
- 6. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 9. For questions on technology, prices and delivery please contact our sales offices or e-mail sales@vanlong.com.

Phone: +86 (10) 5820 3910


Fax: +86 (10) 5820 3915

Email: sales@vanlong.com

902.30 MHz SAW Filter

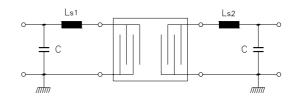
Package Dimensions (QCC8C)

Electrical Connections

Terminals	Connection
1	Input Ground
2	Input
5	Output Groud
6	Output
3,7	To be Grounded
4,8	Case Ground

Package Dimensions

Dimensions	Nom (mm)	Dimensions	Nom (mm)
A	2.08	E	1.20
В	0.60	F	1.35
С	1.27	G	5.00
D	2.54	Н	5.00


ш

Marking

ſ		1
	F5002	
	902.30	1
	YWW	
、 ⁻		۰,

- 1. F5002 Part Code
- 2. Frequency (MHz) in 5 digits
- 3. Date Code:
 - Y : Last digit of year WW : Week No.

Test Circuit

C = 4 pFLs1 = Ls2 = 28 nH

Typical Frequency Response

▶1:Transmission /M Log Mag 10.0 dB/ Ref -6.00 dB ▷2:Transmission /M Log Mag 1.Ø dB/ Ref -3.50 dB 1.211 MHz 902.375 MHz BW: dB Ch11 CF: 745.32 -2.89 dB 0: Loss: -16 -26 - 36 -46 -56 Ch2 🕨 -76 -86 Abs Span 100.000 MHz 902.300 MHz Center Center 902.300 MHz Span 5.000 MHz

Phone: +86 (10) 5820 3910 Fax: +86 (10) 5820 3915 Email: sales@vanlong.com Web: http://www.vanlong.com