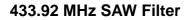
433.92 MHz SAW Filter

- Designed to Provide Front-end selectivity in 433.92 MHz
- Low-Loss, Coupled-Resonator Quartz Design
- Simple External Impedance Matching
- Rugged, Hermetic, Low Profile TO-39 Package

SF433E

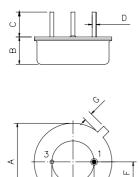
Absolute Maximum Rating (Ta=25°C)						
Parameter		Rating	Unit			
CW RF Power Dissipation	Р	+10	dBm			
DC Voltage VDC Between Any Two Pins	V _{DC}	0	V			
Operating Temperature Range	TA	-40 ~ +85	٥C			
Storage Temperature Range	$T_{\rm stg}$	-45 ~ +125	°C			

Electronic Characteristics						
Parameter		Sym	Minimum	Typical	Maximum	Unit
Nominal Frequency (at 25°C) (Center frequency between 3dB point)		f _C	NS	433.92	NS	MHz
Insertion Loss	433.80 434.12 MHz	IL	-	2.0	4.0	dB
3dB Passband		BW ₃	670	730	790	KHz
Passband (relative to IL)						
	433.76 434.08 MHz		-	1.0	2.0	dB
	433.74 434.10 MHz	α	-	1.0	3.0	dB
	433.68 434.16 MHz		-	1.5	6.0	dB
Relative Attenuation	Relative Attenuation (relative to IL)					
10.00 414.00 MHz			45	50	-	dB
414.00 428.00 MHz			35	40	-	dB
428.00 432.84 MHz		α_{rel}	15	20	-	dB
434.92 442.00 MHz			10	15	-	dB
442.00 550.00 MHz			35	40	-	dB
	550.00 1000.00 MHz		45	50	-	dB
Temperature coeffici	ent of frequency	FTC	-	0.032	-	ppm/K
Frequency Aging	Absolute Value during the First Year	fA	-	-	10	ppm/yr
DC Insulation Resistance Between any Two Pins		-	1.0	-	-	MΩ

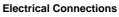

NS = Not Specified

Notes:

- 1. The frequency f_C is defined as the midpoint between the 3dB frequencies.
- 2. Unless noted otherwise, all measurements are made with the filter installed in the specified test fixture that is connected to a 50Ω test system with VSWR \leq 1.2:1. The test fixture L and C are adjusted for minimum insertion loss at the filter center frequency, f_c . Note that insertion loss, bandwidth, and passband shape are dependent on the impedance matching component values and quality.
- 3. Unless noted otherwise, specifications apply over the entire specified operating temperature range.
- 4. The specifications of this device are based on the test circuit shown above and subject to change or obsolescence without notice.
- All equipment designs utilizing this product must be approved by the appropriate government agency prior to manufacture or sale.
- Our liability is only assumed for the Surface Acoustic Wave (SAW) component(s) per se, not for applications, processes and circuits implemented within components or assemblies.
- 7. For questions on technology, prices and delivery please contact our sales offices or email to sales@vanlong.com.

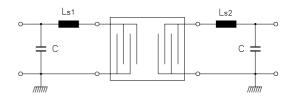

Fax: +86 10 6301 9167

Email: sales@vanlong.com



Package Dimensions (TO-39)

F

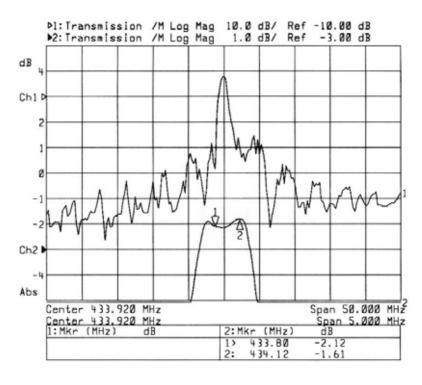


Terminals	Connection	
1	Input/Output	
2	Output/Input	
3	Case Ground	

Package Dimensions

Dimensions	Nom. (mm)	Tol. (mm)	
A	9.35	±0.10	
В	3.40	±0.10	
С	3.00	±0.20	
D	0.45	±0.10	
E	5.08	±0.10	
F	2.54	±0.20	
G	0.45		

Test Circuit


C = 5.6 pF Ls1 = Ls2 = 33 nH

Marking

Ink Marking Color: Black or Blue

Typical Frequency Response

Email: sales@vanlong.com

Web: http://www.vanlong.com